Notes for Deep Learning: Optimization Algorithms
This post is an overview of different optimization algorithms for neural networks.
This post is an overview of different optimization algorithms for neural networks.
In this post, we focus on two mainstreams of one-stage object detection methods: YOLO family and SSD family. Compared to two-stage methods (like R-CNN series), those models skip the region proposal stage and directly extract detection results from feature maps. For that reason, one-stage models are faster but at the cost of reduced accuracy.
In this post, we discuss the computally efficient DCNN architectures, such as MobileNet, ShuffleNet and their variants.
In this post, we are looking into two high-resolution image generation models: ProGAN and StyleGAN. They generates the artificial images gradually, starting from a very low resolution and continuing to a high resolution (finally $1024\times 1024$).